Landauer's Principle and the balance equation

February 29, 2016*

*Last modified 11-Nov-19

Tags: Landauer, physics, math

I’ve been working on my thesisEdit: this was my master’s thesis

over reading week, and I think I’ve finished my introduction to Landauer’s Principle. I ended up writing a pretty detailed derivation of the balance equation, and thus Landauer’s bound, so I thought it might be useful to post here.

Landauer's principle states that there is a minimal energetic cost for a state transformation ρiρf\rho^\text{i}\to \rho^\text{f} on a system S\mathcal{S} via the action of a thermal reservoir E\mathcal{E} at temperature (kBβ)1(k_B\beta)^{-1} kB1.38×1023k_B \approx 1.38 \times 10^{-23} Joules per Kelvin is Boltzmann's constant.

. In particular, if ΔSS\Delta S_\mathcal{S} is the change of entropy of the system S\mathcal{S}, and ΔQE\Delta Q_\mathcal{E} is the change in energy of the reservoir E\mathcal{E}, then ΔQEβ1ΔSS.(1) \Delta Q_\mathcal{E}\geq \beta^{-1}\Delta S_\mathcal{S}. \qquad(1) This principle has generated interest since its inception in 1961; see [Section 1, RW14] [RW14]: An improved Landauer Principle with finite-size corrections, D. Reeb and M. Wolf, 2014 (v3).

for a recent summary. First, the bound has allusions to practicality: perhaps the energy efficiency of our computers will be limited. For changing the state of a classical or quantum bit however, the bound is at most ΔQEkBTlog2(9.6×1024J/K) \Delta Q_\mathcal{E}\geq k_B\cdot T \log 2 \approx (9.6 \times 10^{-24} J/K)\cdot which is extremely small for reasonable temperatures TT; yet, modern processors are within several orders of magnitude of this limit, as shown in Figure 1.

Energy cost of changing state for modern silicon transistors, as compared to a theoretical minimum for classical bits encoded in electron charge at room temperature. Figure reproduced from Figure 1(a) of Energy dissipation and transport in nanoscale devices by Eric Pop (2010).

Energy cost of changing state for modern silicon transistors, as compared to a theoretical minimum for classical bits encoded in electron charge at room temperature. Figure reproduced from Figure 1(a) of Energy dissipation and transport in nanoscale devices by Eric Pop (2010).

Moreover, in 1973 Bennett showed that any Turing machine program may be implemented in a reversible manner, so that ΔSS=0\Delta S_\mathcal{S}=0. Reversible computing is an area of considerable practical interest and continuing theoretical work.

More fundamentally, Landauer's bound is a direct relationship between energy and information (entropy). From now on, we will use natural units so that kB==1k_B=\hbar=1.

In fact, Landauer's principle follows from the entropy balance equation ΔSS+σ=βΔQE(2) \Delta S_\mathcal{S}+ \sigma = \beta \Delta Q_\mathcal{E} \qquad(2) where σ\sigma is the entropy production.

We will define σ\sigma and prove (eq. 2), in a finite dimensional quantum unitary setup, following [Section 3, RW14] and [JP14] [JP14]: A note on the Landauer principle in quantum statistical mechanics, V. Jaksic and C. Pillet, 2014 (v1).

. We assume the system S\mathcal{S} is described by a finite dimensional Hilbert space HS\mathcal{H}_\mathcal{S}, with self-adjoint Hamiltonian hSh_{\mathcal{S}}. The initial state on the system is given by a density matrixnon-negative trace-one operator on HS\mathcal{H}_\mathcal{S}

ρi\rho^\text{i}. Likewise, we assume the environment is described by a finite dimensional Hilbert space HE\mathcal{H}_\mathcal{E} with self-adjoint Hamiltonian hEh_{\mathcal{E}}, and initial state ξi=exp(βhE)tr(exp(βhE))(3) \xi^\text{i}= \frac{\exp(-\beta h_{\mathcal{E}})}{\operatorname{tr}(\exp(-\beta h_{\mathcal{E}}))} \qquad(3) the Gibbs stateGibbs states on E\mathcal{E} are invariant under the free dynamics hEh_{\mathcal{E}}; in this finite dimensional context, they are uniquely so. They thus have the interpretation of thermal equilibrium states.

at temperature β1\beta^{-1}. The system and environment start uncoupled, so the joint initial state is ρiξi\rho^\text{i}\otimes \xi^\text{i}. The evolution of the joint system is given by a unitary operator UB(HSHE)U \in \mathcal{B}(\mathcal{H}_\mathcal{S}\otimes \mathcal{H}_\mathcal{E}), leading to the final joint state UρiξiUU\rho^\text{i}\otimes \xi^\text{i}U^*. We decouple the systems, yielding ρf=trE(UρiξiU),ξf=trS(UρiξiU) \begin{aligned} \rho^\text{f}= \operatorname{tr}_\mathcal{E}(U \rho^\text{i}\otimes \xi^\text{i}U^*), \qquad \xi^\text{f}= \operatorname{tr}_\mathcal{S}(U\rho^\text{i}\otimes \xi^\text{i}U^*) \end{aligned} as the final state on the system, environment, respectively.

We identify two quantities of interest during this process: ΔSS\Delta S_\mathcal{S}, the change of entropy of the system of interest, and ΔQE\Delta Q_\mathcal{E}, the change of energy of the environment, defined as Note the sign convention.

ΔSS:=S(ρi)S(ρf),ΔQE:=tr(hEξf)tr(hEξi), \begin{aligned} \Delta S_\mathcal{S}:\!&= S(\rho^\text{i}) - S(\rho^\text{f}), & \Delta Q_\mathcal{E}:\!&= \operatorname{tr}(h_{\mathcal{E}}\xi^\text{f})- \operatorname{tr}(h_{\mathcal{E}}\xi^\text{i}), \end{aligned} where S(ρ):=trρlogρS(\rho) := - \operatorname{tr}\rho\log\rho is the von Neumann entropy. Recall the relative entropy S(ην)=tr(ηlogηlogν))S(\eta|\nu) = \operatorname{tr}(\eta\log\eta-\log \nu)) of two faithful states η\eta and ν\nu has S(ην)0S(\eta|\nu)\geq 0 with equality if and only if η=ν\eta=\nu. See sections 2.5-2.6 of Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction by Jaksic et al (2011) for a review of entropy functions in finite dimensional quantum mechanics.

With this function, we define the entropy production σ:=S(UρiξiUρfξi). \sigma := S(U \rho^\text{i}\otimes \xi^\text{i}\,U^* | \rho^\text{f}\otimes \xi^\text{i}). By definition of relative entropy, the entropy production may be written σ=tr(UρiξiUlog(UρiξiU))tr(UρiξiUlog(ρfξi)).\begin{aligned} \sigma = \operatorname{tr}\big(U \rho^\text{i}\otimes \xi^\text{i}U^* \, \log (U \rho^\text{i}\otimes \xi^\text{i}U^*)\big) -\operatorname{tr}\big(U \rho^\text{i}\otimes \xi^\text{i}U^* \, \log(\rho^\text{f}\otimes \xi^\text{i})\big). \end{aligned} We then recognize the first term as an entropy, and expand the second term using the following claim.

If AA and BB are positive (and thus self-adjoint) on a finite dimensional Hilbert space, then

log(AB)=log(A)id+idlog(B). \log ( A\otimes B) = \log (A)\otimes \operatorname{id}+ \operatorname{id}\otimes \log(B).

If A,BA,B have spectral decompositions A=iμiPiA = \sum_i \mu_i P_i and B=jλjQjB= \sum_j \lambda_j Q_j, then AB=ijμiλjPiQjA\otimes B= \sum_{ij} \mu_i \lambda_j P_i \otimes Q_j. With this,

log(AB)=ijlog(μiλj)PiQj=ij(logμi+logλj)PiQj=ijlogμiPiQj+ijlogλjPiQj=ilogμiPiid+jlogλjidQj=log(A)id+idlog(B).\begin{aligned} \log(A\otimes B)&= \sum_{ij} \log(\mu_i \lambda_j) P_i \otimes Q_j \\&= \sum_{ij} (\log \mu_i + \log \lambda_j) P_i\otimes Q_j \\&= \sum_{ij} \log \mu_i P_i\otimes Q_j + \sum_{ij} \log \lambda_j P_i\otimes Q_j \\&= \sum_i \log \mu_i P_i\otimes \operatorname{id}+ \sum_j \log \lambda_j \operatorname{id}\otimes Q_j\\&= \log(A)\otimes \operatorname{id}+ \operatorname{id}\otimes \log(B). \end{aligned}

This yields

σ=S(UρiξiU)tr(UρiξiU(logρfid))tr(UρiξiU(idlogξi)).\begin{aligned}\sigma &= - S(U \rho^\text{i}\otimes \xi^\text{i}U^*) - \operatorname{tr}\big( U \rho^\text{i}\otimes \xi^\text{i}U^* \, (\log \rho^\text{f}\otimes \operatorname{id})\big) \\&\qquad- \operatorname{tr}\big( U \rho^\text{i}\otimes \xi^\text{i}U^* \, ( \operatorname{id}\otimes \log \xi^\text{i})\big).\end{aligned}

Since entropy is invariant under a unitary transformationAs may immediately be seen by the spectral theorem: if ρ\rho has spectral decomposition ρ=iμiPi\rho = \sum_i \mu_i P_i, then S(ρ)=iμilogμi=S(UρU)S(\rho) = -\sum_i \mu_i\log \mu_i= S(U\rho U^*), since eigenvalues are invariant under unitary transformations (change of basis).

, we have S(UρiξiU)=S(ρiξi)S(U \rho^\text{i}\otimes \xi^\text{i}U^*) = S(\rho^\text{i}\otimes \xi^\text{i}). Furthermore, by definition of the partial trace, tr(UρiξiU(logρfid))=tr(trS(UρiξiU)logρf),\begin{aligned}\operatorname{tr}\big( U \rho^\text{i}\otimes \xi^\text{i}U^* \, (\log \rho^\text{f}\otimes \operatorname{id})\big) = \operatorname{tr}\big(\operatorname{tr}_\mathcal{S}(U \rho^\text{i}\otimes \xi^\text{i}U^*) \log \rho^\text{f}\big),\end{aligned} which is simply tr(ρflogρf)=S(ρf)\operatorname{tr}(\rho^\text{f}\log \rho^\text{f}) = -S(\rho^\text{f}). Using this argument for the third term as well, we are left with σ=S(ρiξi)+S(ρf)tr(ξflogξi).\begin{aligned}\sigma =-S(\rho^\text{i}\otimes \xi^\text{i}) + S(\rho^\text{f}) - \operatorname{tr}(\xi^\text{f}\log \xi^\text{i}).\end{aligned} But S(ρiξi)=tr(ρiξilog(ρiξi))=tr(ρiξi(logρiid))tr(ρiξi(idlogξi))=tr(ρilogρiξi)tr(ρiξilogξi)=tr(ρilogρi)tr(ξi)tr(ξilogξi)tr(ρi)=S(ρi)+S(ξi),\begin{aligned}S(\rho^\text{i}\otimes \xi^\text{i}) &= -\operatorname{tr}\big(\rho^\text{i}\otimes \xi^\text{i}\log(\rho^\text{i}\otimes \xi^\text{i}) \big) \\&= -\operatorname{tr}\big(\rho^\text{i}\otimes \xi^\text{i}(\log\rho^\text{i}\otimes \operatorname{id})\big) - \operatorname{tr}\big(\rho^\text{i}\otimes \xi^\text{i}(\operatorname{id}\otimes\log \xi^\text{i})\big)\\&=-\operatorname{tr}\big(\rho^\text{i}\log\rho^\text{i}\otimes \xi^\text{i}\big) - \operatorname{tr}\big(\rho^\text{i}\otimes \xi^\text{i}\log \xi^\text{i}\big) \\&=- \operatorname{tr}(\rho^\text{i}\log \rho^\text{i}) \operatorname{tr}(\xi^\text{i}) - \operatorname{tr}(\xi^\text{i}\log \xi^\text{i}) \operatorname{tr}(\rho^\text{i})\\&= S(\rho^\text{i}) + S(\xi^\text{i}),\end{aligned} using that tr(ρi)=tr(ξi)=1\operatorname{tr}(\rho^\text{i}) = \operatorname{tr}(\xi^\text{i})=1. Then, σ=S(ρi)+S(ρf)S(ξi)tr(ξflogξi)=ΔSStr((ξfξi)logξi).\begin{aligned}\sigma &= -S(\rho^\text{i}) +S(\rho^\text{f})- S(\xi^\text{i}) - \operatorname{tr}(\xi^\text{f}\log \xi^\text{i}) \\&= -\Delta S_\mathcal{S}- \operatorname{tr}\big((\xi^\text{f}- \xi^\text{i}) \log \xi^\text{i}\big).\end{aligned} Additionally, using (eq. 3), logξi=βhElog(tr(exp(βhE)),\begin{aligned}\log \xi^\text{i}= -\beta h_{\mathcal{E}}- \log(\operatorname{tr}(\exp(-\beta h_{\mathcal{E}})),\end{aligned} so σ=ΔSS+βtr((ξfξi)hE)+log(tr(exp(βhE)))tr(ξfξi)=ΔSS+βΔQE,\begin{aligned}\sigma &= -\Delta S_\mathcal{S}+ \beta\operatorname{tr}\big((\xi^\text{f}- \xi^\text{i}) h_{\mathcal{E}}\big) + \log(\operatorname{tr}(\exp(-\beta h_{\mathcal{E}})))\operatorname{tr}(\xi^\text{f}- \xi^\text{i}) \\&= -\Delta S_\mathcal{S}+ \beta \Delta Q_\mathcal{E},\end{aligned} using that tr(ξfξi)=11=0\operatorname{tr}(\xi^\text{f}- \xi^\text{i}) = 1-1=0.

We thus have the balance equation (eq. 2). Landauer’s Principle (eq. 1) follows by simply noting σ0\sigma\geq 0 as it is a relative entropy.

We may interpret (eq. 2) as a microscopic Clausius formulation of the Second Law of Thermodynamics [BHN+14] [BHN+14]: The second laws of quantum thermodynamics F. Brandao et al, 2013 (v4).

. More specifically, we may interpret βΔQE=ifdQET=ΔSEClausius\beta \Delta Q_\mathcal{E}=\int_\text{i}^\text{f}\frac{\mathrm{d} Q_\mathcal{E}}{T}= \Delta S_\mathcal{E}^\text{Clausius} as the Clausius entropy change of the environment. Note: We’re making an analogy to the Clausius formulation of the Second Law of Thermodynamics, but not a formal relationship. The balance equation presented here and the 2nd law are part of two different frameworks.

Then, with a minus sign to account for our sign convention, we will interpret ΔSSClausius=ΔSS\Delta S_\mathcal{S}^\text{Clausius} =-\Delta S_\mathcal{S}, and the Second Law is ΔSEClausius+ΔSSClausius=entropy production0.\begin{aligned}\Delta S^\text{Clausius}_\mathcal{E}+\Delta S^\text{Clausius}_\mathcal{S}=\text{entropy production}\geq 0.\end{aligned} In this language then, σ\sigma serves as the entropy production, which gives it its name. The classical Second Law, however, is a statement about macroscopic quantities obtained from the behavior of 1023\gtrsim 10^{23} particles. Within the theory of quantum mechanics and our assumptions, however, the balance equation (eq. 2) is exact on a microscopic level.