/home/eph
~/blog
~/teaching
~/work
/paper
~/about
~/contact
~/tags
~/search
Papers
[1]
http://arxiv.org/abs/2001.03598v3
[
html
pdf
]
Guesswork with Quantum Side Information
Eric P. Hanson, Vishal Katariya, Nilanjana Datta, Mark M. Wilde
Comments:
v3: 17 pages, 2 figures, final version published in IEEE Transactions on Information Theory
Subjects:
Quantum Physics (quant-ph)
Journal ref:
IEEE Transactions on Information Theory, vol. 68, no. 1, pages 322--338, January 2022
DOI:
10.1109/TIT.2021.3118878
[2]
http://arxiv.org/abs/1909.06981v3
[
html
pdf
]
Universal proofs of entropic continuity bounds via majorization flow
Eric P. Hanson, Nilanjana Datta
Comments:
29 pages; v2: added Cor. 3.2, Section 7, shortened some proofs, minor fixes; v3: added Section 6.2, minor fixes
Subjects:
Quantum Physics (quant-ph)
; Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
DOI:
10.4171/90-1/20
[3]
http://arxiv.org/abs/2010.02408v1
[
html
pdf
]
Entropic Continuity Bounds & Eventually Entanglement-Breaking Channels
Eric P. Hanson
Comments:
PhD thesis; 292 pages, 26 figures
Subjects:
Quantum Physics (quant-ph)
[4]
http://arxiv.org/abs/1902.08173v2
[
html
pdf
]
Eventually entanglement breaking Markovian dynamics: structure and characteristic times
Eric P. Hanson, Cambyse Rouzé, Daniel Stilck França
Comments:
53 pages; accepted for publication in Annales Henri Poincar\'e
Subjects:
Quantum Physics (quant-ph)
DOI:
10.1007/s00023-020-00906-4
[5]
http://arxiv.org/abs/1912.05599v1
[
html
pdf
]
A continuity bound for the expected number of connected components of a random graph: a model for epidemics
Koenraad Audenaert, Eric P. Hanson, Nilanjana Datta
Comments:
11 pages, 3 figures
Subjects:
Probability (math.PR)
; Probability (math.PR),Combinatorics (math.CO)
[6]
http://arxiv.org/abs/1809.11143v1
[
html
pdf
]
Duality between source coding with quantum side information and c-q channel coding
Hao-Chung Cheng, Eric P. Hanson, Nilanjana Datta, Min-Hsiu Hsieh
Comments:
35 pages
Subjects:
Quantum Physics (quant-ph)
; Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
[7]
http://arxiv.org/abs/1803.07505v3
[
html
pdf
]
Non-Asymptotic Classical Data Compression with Quantum Side Information
Hao-Chung Cheng, Eric P. Hanson, Nilanjana Datta, Min-Hsiu Hsieh
Comments:
45 pages, 3 figures; v2 added reference [23] (prior work on strong converse exponent lower bounds); v3 fixed typos and added comparisons with reference [23]
Subjects:
Quantum Physics (quant-ph)
; Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
DOI:
10.1109/TIT.2020.3038517
[8]
http://arxiv.org/abs/1705.08281v2
[
html
pdf
]
Landauer's Principle for Trajectories of Repeated Interaction Systems
Eric P. Hanson, Alain Joye, Yan Pautrat, Renaud Raquépas
Comments:
48 pages, 4 figures; fixed typos, made cosmetic changes, and added Lemma 5.5. To appear in Annales Henri Poincar\'e
Subjects:
Mathematical Physics (math-ph)
; Mathematical Physics (math-ph),Mathematical Physics (math-ph),Quantum Physics (quant-ph)
Journal ref:
Annales Henri Poincar\'e 19(7):1939-1991 (2018)
DOI:
10.1007/s00023-018-0679-1
[9]
http://arxiv.org/abs/1706.02212v2
[
html
pdf
]
Maximum and minimum entropy states yielding local continuity bounds
Eric P. Hanson, Nilanjana Datta
Comments:
38 pages; v2: added an application, streamlined proofs of Lem. 6.8-6.11, corrected typos, corrected figure 1, updated the style of figure 2
Subjects:
Quantum Physics (quant-ph)
; Quantum Physics (quant-ph),Mathematical Physics (math-ph),Mathematical Physics (math-ph)
Journal ref:
Journal of Mathematical Physics 59, no. 4 (April 1, 2018): 042204
DOI:
10.1063/1.5000120
[10]
http://arxiv.org/abs/1707.04249v2
[
html
pdf
]
Tight uniform continuity bound for a family of entropies
Eric P. Hanson, Nilanjana Datta
Comments:
16 pages, 4 figures. v2: added missing definition of Tsallis entropy, corrected minor typos
Subjects:
Quantum Physics (quant-ph)
; Quantum Physics (quant-ph),Information Theory (cs.IT),Mathematical Physics (math-ph),Information Theory (cs.IT),Mathematical Physics (math-ph)
[11]
http://arxiv.org/abs/1510.00533v3
[
html
pdf
]
Landauer's Principle in Repeated Interaction Systems
Eric Hanson, Alain Joye, Yan Pautrat, Renaud Raquépas
Comments:
Linked entropy production to detailed balance relation, improved presentation, and added concluding section
Subjects:
Mathematical Physics (math-ph)
; Mathematical Physics (math-ph),Mathematical Physics (math-ph),Quantum Physics (quant-ph)
Journal ref:
Communications in Mathematical Physics 349(1):285-327 (2017)
DOI:
10.1007/s00220-016-2751-3
[ Showing 11 of 11 total entries]
[ This list is powered by an
arXiv author id
and the
myarticles
widget ]