Papers

[1]  http://arxiv.org/abs/2001.03598v3 [ html pdf ]
Guesswork with Quantum Side Information
Eric P. Hanson, Vishal Katariya, Nilanjana Datta, Mark M. Wilde
Comments: v3: 17 pages, 2 figures, final version published in IEEE Transactions on Information Theory
Subjects: Quantum Physics (quant-ph)
Journal ref: IEEE Transactions on Information Theory, vol. 68, no. 1, pages 322--338, January 2022
[2]  http://arxiv.org/abs/1909.06981v3 [ html pdf ]
Universal proofs of entropic continuity bounds via majorization flow
Eric P. Hanson, Nilanjana Datta
Comments: 29 pages; v2: added Cor. 3.2, Section 7, shortened some proofs, minor fixes; v3: added Section 6.2, minor fixes
Subjects: Quantum Physics (quant-ph); Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
[3]  http://arxiv.org/abs/2010.02408v1 [ html pdf ]
Entropic Continuity Bounds & Eventually Entanglement-Breaking Channels
Eric P. Hanson
Comments: PhD thesis; 292 pages, 26 figures
Subjects: Quantum Physics (quant-ph)
[4]  http://arxiv.org/abs/1902.08173v2 [ html pdf ]
Eventually entanglement breaking Markovian dynamics: structure and characteristic times
Eric P. Hanson, Cambyse Rouzé, Daniel Stilck França
Comments: 53 pages; accepted for publication in Annales Henri Poincar\'e
Subjects: Quantum Physics (quant-ph)
[5]  http://arxiv.org/abs/1912.05599v1 [ html pdf ]
A continuity bound for the expected number of connected components of a random graph: a model for epidemics
Koenraad Audenaert, Eric P. Hanson, Nilanjana Datta
Comments: 11 pages, 3 figures
Subjects: Probability (math.PR); Probability (math.PR),Combinatorics (math.CO)
[6]  http://arxiv.org/abs/1809.11143v1 [ html pdf ]
Duality between source coding with quantum side information and c-q channel coding
Hao-Chung Cheng, Eric P. Hanson, Nilanjana Datta, Min-Hsiu Hsieh
Comments: 35 pages
Subjects: Quantum Physics (quant-ph); Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
[7]  http://arxiv.org/abs/1803.07505v3 [ html pdf ]
Non-Asymptotic Classical Data Compression with Quantum Side Information
Hao-Chung Cheng, Eric P. Hanson, Nilanjana Datta, Min-Hsiu Hsieh
Comments: 45 pages, 3 figures; v2 added reference [23] (prior work on strong converse exponent lower bounds); v3 fixed typos and added comparisons with reference [23]
Subjects: Quantum Physics (quant-ph); Quantum Physics (quant-ph),Information Theory (cs.IT),Information Theory (cs.IT)
[8]  http://arxiv.org/abs/1705.08281v2 [ html pdf ]
Landauer's Principle for Trajectories of Repeated Interaction Systems
Eric P. Hanson, Alain Joye, Yan Pautrat, Renaud Raquépas
Comments: 48 pages, 4 figures; fixed typos, made cosmetic changes, and added Lemma 5.5. To appear in Annales Henri Poincar\'e
Subjects: Mathematical Physics (math-ph); Mathematical Physics (math-ph),Mathematical Physics (math-ph),Quantum Physics (quant-ph)
Journal ref: Annales Henri Poincar\'e 19(7):1939-1991 (2018)
[9]  http://arxiv.org/abs/1706.02212v2 [ html pdf ]
Maximum and minimum entropy states yielding local continuity bounds
Eric P. Hanson, Nilanjana Datta
Comments: 38 pages; v2: added an application, streamlined proofs of Lem. 6.8-6.11, corrected typos, corrected figure 1, updated the style of figure 2
Subjects: Quantum Physics (quant-ph); Quantum Physics (quant-ph),Mathematical Physics (math-ph),Mathematical Physics (math-ph)
Journal ref: Journal of Mathematical Physics 59, no. 4 (April 1, 2018): 042204
[10]  http://arxiv.org/abs/1707.04249v2 [ html pdf ]
Tight uniform continuity bound for a family of entropies
Eric P. Hanson, Nilanjana Datta
Comments: 16 pages, 4 figures. v2: added missing definition of Tsallis entropy, corrected minor typos
Subjects: Quantum Physics (quant-ph); Quantum Physics (quant-ph),Information Theory (cs.IT),Mathematical Physics (math-ph),Information Theory (cs.IT),Mathematical Physics (math-ph)
[11]  http://arxiv.org/abs/1510.00533v3 [ html pdf ]
Landauer's Principle in Repeated Interaction Systems
Eric Hanson, Alain Joye, Yan Pautrat, Renaud Raquépas
Comments: Linked entropy production to detailed balance relation, improved presentation, and added concluding section
Subjects: Mathematical Physics (math-ph); Mathematical Physics (math-ph),Mathematical Physics (math-ph),Quantum Physics (quant-ph)
Journal ref: Communications in Mathematical Physics 349(1):285-327 (2017)

[ Showing 11 of 11 total entries]
[ This list is powered by an arXiv author id and the myarticles widget ]