“The Haar measure allows integration over topological groups, which has many applications; for example, the use of the Haar measure in proving the Fully Quantum Slepian Wolf (or state transfer) protocol fundamental to quantum information theory is briefly discussed in section VI. But first we build the definitions necessary to define the Haar measure, and state some fundamental theorems. Next, we show a left Haar measure exists on locally compact Hausdorff topological groups, and is unique (up to scale) on such groups which are also $\sigma$-compact. While of course the Haar measure is unique up to scale on all locally compact Hausdorff groups, the simpler case admits an elegant proof. Lastly, the relationship between the right and left Haar measure is investigated."